Grassland responses to global environmental changes suppressed by elevated CO2.
نویسندگان
چکیده
Simulated global changes, including warming, increased precipitation, and nitrogen deposition, alone and in concert, increased net primary production (NPP) in the third year of ecosystem-scale manipulations in a California annual grassland. Elevated carbon dioxide also increased NPP, but only as a single-factor treatment. Across all multifactor manipulations, elevated carbon dioxide suppressed root allocation, decreasing the positive effects of increased temperature, precipitation, and nitrogen deposition on NPP. The NPP responses to interacting global changes differed greatly from simple combinations of single-factor responses. These findings indicate the importance of a multifactor experimental approach to understanding ecosystem responses to global change.
منابع مشابه
Responses of Grassland Production to Single and Multiple Global Environmental Changes
In this century, increasing concentrations of carbon dioxide (CO2) and other greenhouse gases in the Earth's atmosphere are expected to cause warmer surface temperatures and changes in precipitation patterns. At the same time, reactive nitrogen is entering natural systems at unprecedented rates. These global environmental changes have consequences for the functioning of natural ecosystems, and ...
متن کاملAdditive effects of simulated climate changes, elevated CO2, and nitrogen deposition on grassland diversity.
Biodiversity responses to ongoing climate and atmospheric changes will affect both ecosystem processes and the delivery of ecosystem goods and services. Combined effects of co-occurring global changes on diversity, however, are poorly understood. We examined plant diversity responses in a California annual grassland to manipulations of four global environmental changes, singly and in combinatio...
متن کاملFlowering phenology in a species-rich temperate grassland is sensitive to warming but not elevated CO2.
* Flowering is a critical stage in plant life cycles, and changes might alter processes at the species, community and ecosystem levels. Therefore, likely flowering-time responses to global change drivers are needed for predictions of global change impacts on natural and managed ecosystems. * Here, the impact of elevated atmospheric CO2 concentration ([CO2]) (550 micromol mol(-1)) and warming (+...
متن کاملBelowground nematode herbivores are resistant to elevated atmospheric CO2 concentrations in grassland ecosystems
Grasslands are considered to be one of the most sensitive ecosystems to rising atmospheric CO2 concentrations, since, in addition to direct effects of elevated CO2 on plant growth, indirect increases in water availability as an effect of elevated CO2 may enhance primary production and alter plant community composition in these typically dry ecosystems. Moreover, grasslands support large populat...
متن کاملClimate change reduces the net sink of CH4 and N2O in a semiarid grassland.
Atmospheric concentrations of methane (CH4 ) and nitrous oxide (N2 O) have increased over the last 150 years because of human activity. Soils are important sources and sinks of both potent greenhouse gases where their production and consumption are largely regulated by biological processes. Climate change could alter these processes thereby affecting both rate and direction of their exchange wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 298 5600 شماره
صفحات -
تاریخ انتشار 2002